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Abstract 

Palm oil is a key plantation commodity that plays a major role in Indonesia’s economy by contributing significantly to state 

revenue. Accurate forecasting of palm oil production is essential to support effective production planning and operational 

decision-making in plantation management. This study aimed to forecast palm oil production at the Terantam Plantation, 

Indonesia, for the year 2025 using the Seasonal Autoregressive Integrated Moving Average (SARIMA) model. The data used 

consisted of monthly palm oil production volumes (kg) from January 2014 to December 2024. Several SARIMA models were 

evaluated, and the best-performing model was selected based on the Akaike Information Criterion (AIC). The results indicate that 

the SARIMA(0,1,4)(0,1,1)12 model achieved the lowest AIC value and satisfied diagnostic requirements, with residuals behaving 

as white noise and following a normal distribution. The forecasting accuracy assessment yielded a Mean Absolute Percentage 

Error (MAPE) of 8.02%, which is below the 10% threshold and indicates very high forecasting accuracy. The forecasting results 

reveal a clear seasonal pattern in palm oil production, with the highest predicted production occurring in September 2025 at 

15,108,145 kg and the lowest in February 2025 at 9,347,573 kg. Overall, the findings demonstrate that the SARIMA model 

effectively captures both trend and seasonal components of palm oil production data. The results provide valuable insights for 

plantation-level production planning and highlight the applicability of SARIMA-based forecasting methods for other agricultural 

commodities with strong seasonal characteristics. 
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1. Introduction 

 Palm oil (Elaeis guineensis Jacq.) is a key agricultural commodity that plays an important role in Indonesia’s 

economy, as it supplies vegetable oil for various industrial sectors and contributes significantly to national revenue 

(Badan Pusat Statistik Indonesia, 2024). Globally, palm oil is the highest-producing oil crop in terms of total 

production volume, making it a strategic commodity in both domestic and international markets (Descals et al., 2024). 

In Indonesia, palm oil plantations are widely distributed, with Riau Province ranking among the largest producers due 

to its extensive plantation area and favorable agroclimatic conditions, according to Direktorat Jendral Perkebunan 

(2021).  

 One of the major state-owned enterprises engaged in the palm oil agro-industry is PTPN IV Regional III, which 

manages several plantation units across Riau Province. Among these, Terantam Plantation, located in Kampar 

Regency, represents an important production center contributing to regional and national output. Palm oil production 

at the plantation level directly affects operational efficiency, revenue stability, and long-term sustainability. Therefore, 

maintaining stable and optimal production levels is crucial for supporting effective plantation management. 

 Accurate production forecasting is an essential component of agricultural planning, as it enables managers to 

anticipate future output, optimize harvesting schedules, allocate labor and resources efficiently, and reduce operational 

risks. Forecasting is defined as the process of estimating future conditions based on historical data patterns and 

relevant influencing factors (Chaowai & Chutima, 2024). In the context of time series analysis, production data often 

exhibit trend and seasonal components, which must be properly modeled to obtain reliable forecasts.  

Among various time series forecasting techniques, the Seasonal Autoregressive Integrated Moving Average 

(SARIMA) model has been widely applied to data characterized by both trend and seasonality. The SARIMA model 

extends the ARIMA framework by incorporating seasonal autoregressive and moving average components, allowing it 
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to capture recurring seasonal fluctuations more effectively (Jamila, Siregar, & Yunis, 2021). This makes SARIMA 

particularly suitable for modeling agricultural production data, which are strongly influenced by seasonal harvest 

cycles and environmental conditions. 

 Although previous studies have applied SARIMA models to various agricultural and industrial forecasting 

problems, limited research has focused on plantation-level palm oil production forecasting using long-term monthly 

data in Indonesia. In particular, empirical studies that provide detailed diagnostic evaluation and forecasting accuracy 

assessment at the estate scale remain scarce. Addressing this gap is important, as plantation-level forecasts offer more 

practical value for operational decision-making than aggregated regional or national forecasts. 

 Therefore, this study aimed to forecast palm oil production at Terantam Plantation, Indonesia, for the year 2025 

using the SARIMA modeling approach. By utilizing monthly production data from January 2014 to December 2024, 

this research seeks to identify the most appropriate SARIMA model based on statistical criteria and diagnostic tests. 

The findings are expected to provide a reliable forecasting reference for plantation management and to demonstrate 

the applicability of SARIMA models for agricultural commodities with strong seasonal characteristics.  

2. Literature Review 

2.1 Palm Oil Production 

Palm oil (Elaeis guineensis) is the most productive and widely traded oil crop in the world, contributing more 
than one-third of global vegetable oil production (Murphy, Goggin, & Paterson, 2021). Its high yield per hectare and 
broad industrial applications make palm oil a strategically important commodity for many producing countries, 
particularly Indonesia. Beyond its contribution to export earnings, the palm oil sector supports employment 
generation, agro-industry development, and regional economic growth (Rifin et al., 2020).  

Palm oil production refers to the total output derived from harvested Fresh Fruit Bunches (FFB), which is 
influenced by multiple factors, including climatic conditions, plantation management practices, soil fertility, and plant 
age. Seasonal variations in rainfall and harvesting cycles often lead to fluctuations in monthly production levels. As a 
result, production data typically exhibit trend and seasonal patterns that require appropriate analytical approaches. 

Monitoring and forecasting palm oil production are essential for plantation-level planning, as accurate forecasts 
enable managers to optimize harvesting schedules, manage labor allocation, and reduce uncertainty in supply chain 
operations. In this study, palm oil production data are measured in kilograms (kg) and obtained from historical 
plantation records, providing a reliable time series for analyzing production dynamics over time. Given the seasonal 
nature of palm oil harvesting, time series forecasting models that explicitly account for seasonality are particularly 
relevant. 

2.2 Seasonal Autoregressive Integrated Moving Average (SARIMA) Model 

The Seasonal Autoregressive Integrated Moving Average (SARIMA) model is an extension of the 
Autoregressive Integrated Moving Average (ARIMA) framework that incorporates seasonal components to capture 
recurring patterns in time series data. While the ARIMA model effectively models non-seasonal trends through 
autoregressive (AR), differencing (I), and moving average (MA) components, it is limited in handling systematic 
seasonal fluctuations commonly observed in agricultural production data (Wei, 2006). 

                              (1) 

 The SARIMA model addresses this limitation by introducing seasonal autoregressive and moving average 

terms, allowing both short-term dynamics and seasonal behavior to be modeled simultaneously. A SARIMA model is 

generally denoted as SARIMA                , where      represent the non-seasonal AR, differencing, and MA 

orders, while      denote the corresponding seasonal components with seasonal period  . 

 Several studies have demonstrated the effectiveness of SARIMA models in forecasting time series data with 

strong seasonal characteristics, including applications in agriculture, energy demand, rainfall prediction, and 

transportation systems (Latief et al., 2022; Febiola et al., 2024). Compared to simpler methods such as moving 

averages or exponential smoothing, SARIMA offers greater flexibility in capturing complex temporal structures, 

particularly when long-term historical data are available. 

 However, despite its widespread application, the effectiveness of SARIMA models depends on proper model 

identification, stationarity testing, parameter estimation, and diagnostic checking. In plantation-level studies, careful 

evaluation of residual behavior and forecasting accuracy is essential to ensure that the selected model provides 

reliable and actionable results. This study adopts the SARIMA modeling framework due to its suitability for monthly 

palm oil production data, which exhibit both trend and annual seasonal patterns. 
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 By focusing on plantation-scale production forecasting using long-term monthly data, this research contributes 

to the existing literature by demonstrating the practical applicability of SARIMA models in supporting operational 

decision-making within the palm oil sector. 

 Meanwhile, the Moving Average (MA) model is a component that indicates the dependence between the 

current error term and the error terms from previous periods (Jamila, Siregar, & Yunis, 2021). This model is denoted 

as MA(q) or ARIMA(0, 0, q), and the model equation is expressed as follows (Wei, 2006). 

                            (2) 

 The ARIMA (Autoregressive Integrated Moving Average) model is a combination of the AR, I, and MA 

components. The Integrated (I) component is used to address non-stationarity in the mean of time series data by 

applying differencing until the data become stationary. In general, the ARIMA(p, d, q) model can be expressed in the 

following equation (Wei, 2006). 

                              (3) 

 The ARIMA model is not yet able to capture seasonal patterns that appear in time series data; therefore, it was 

extended to the Seasonal Autoregressive Integrated Moving Average (SARIMA) model, which combines the ARIMA 

components with seasonal components to model both trend and seasonal patterns in the data. The generalized ARIMA 

model for data with seasonal patterns is denoted as SARIMA               . In general, the equation for the 

SARIMA model is expressed as follows (Wei, 2006): 

    
                                

                    (4)  

where: 

p, d, q  : orders of the non-seasonal AR, differencing, MA components;  

P, D, Q : orders of the seasonal AR, differencing, MA components; 

    : value of the variable at time t; 

S  : seasonal period; 

      : non-seasonal AR operator of order p = (              
  ; 

    
   : seasonal AR operator of order P = (              

   ; 

       : non-seasonal differencing operator of order d; 

        : seasonal differencing operator of order D; 

  ( )  : non-seasonal MA operator of order q = (              
  ; 

    
   : seasonal MA operator of order Q = (              

   ; 

    : error term at time t. 

2.3 Stationarity Test 

2.3.1 Stationary in Mean 

 Stationarity in the mean can be examined using the Augmented Dickey-Fuller (ADF) test to remove trends or 

seasonal patterns in the data until the series becomes stationary. If the data are found to be non-stationary, 

differencing must be applied, which involves calculating the difference between the current data value and the value 

of the previous period (Budianti et al., 2024). The hypotheses used in this test are as follows (Suparti & Santoso, 

2023): 

  :     (Data is non-stationary in mean)  

  :     (Data is stationary in mean) 

Significance level:        

Dickey-Fuller test statistic: 

  
 ̂  

   ̂

              (5) 

where: 

  : calculated t-value; 

 ̂ : estimated value of the parameter  ; 

   ̂ : standard error of  ; 
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 The decision-making process is determined by comparing the ADF test statistic with the ADF critical value. If 

                        , then    is rejected, which means that the data are stationary in the mean. Conversely, if 

                        , then    is not rejected, indicating that the data are not stationary and therefore require 

differencing. Differencing is performed by transforming the data through subtracting the value of the previous period 

from the current value. In general, the differencing process for seasonal differencing with a seasonal period (S) can be 

written as follows (Wei, 2006): 

                          (9) 

where: 

   : value of the time series at period t; 

  : backshift operator, such that          ; 

S : length of the seasonal period; 

      : value of the time series at period t-S (difference S of the previous period). 

2.3.2 Stationary in Variance 

 The stationarity test in variance is conducted to examine whether the data exhibit non-constant variance, as such 

a condition may reduce model accuracy and cause fluctuations that cannot be predicted consistently. Non-constant 

variance is commonly referred to as heteroscedasticity. The stationarity test in variance is carried out using the Box-

Cox transformation by observing the lambda (λ) alue obtained from RStudio. If the λ value is close to or equal to 1, 

the data are considered stationary in variance. Conversely, if the λ value is not close to 1 or is far from 1, the data are 

not yet stationary in variance. 

 If the data are not stationary in variance, a Box-Cox transformation will be applied to make the variance 

stationary. The Box-Cox transformation can be expressed as follows. 

      {
  
   

 
                 

                    
                (10) 

where: 

   : actual data at time t;  

       : Box-Cox transformation value of the data; 

  : Box-Cox transformation parameter. 

2.4 lnitial Model Identification 

Initial model identification is conducted by examining the data pattern using the Autocorrelation Function (ACF) 

and Partial Autocorrelation Function (PACF) plots. The ACF plot is used to indicate the presence of Moving Average 

(MA) components, while the PACF plot is used to identify Autoregressive (AR) components (Liu et al., 2024). These 

plots assist in determining the appropriate orders of the AR and MA components in the SARIMA model. In general, 

initial model identification is performed through the interpretation of ACF and PACF plots. However, in this study, 

the auto.arima() function from the forecast package in RStudio was employed. This function automatically selects the 

most suitable SARIMA model by evaluating parameter combinations based on an information criterion, namely the 

Akaike Information Criterion (AIC). 

2.5 Significance Testing of Parameters 

Significance testing of model parameters is required to ensure that the parameters of the AR, MA, and seasonal 

components have a significant effect on the palm oil production data (kg). The hypothesis testing for parameter 
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significance is formulated as follows. 

  :     (the parameter is not significant) 

  :     (the parameter is significant) 

Significance level:    0.05 

Test statistic for the parameter: 

  
 ̂

   ̂

                    (11) 
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∑       

 
   

∑     
  

   
                        (12) 

   ̂  √
 ̂ 

 

∑     
  

   
                              (13) 

 ̂ 
  

 

   
∑      ̂     

 
   

2
                              (14) 

where: 

 ̂ : the estimated parameter being tested; 

    ̂  : the standard error of ( ̂). 

 

The significance test is carried out by comparing            with  
(
  

 
    )

. If            >  
(
  

 
    )

, then    ditolak 

yang berarti parameter tersebut terbukti signifikan. Namun, apabila nilai            <  
(
  

 
    )

, then    is rejected, 

indicating that the parameter is significant. However, if            >  
(
  

 
    )

, then    is not rejected, indicating that the 

parameter is not significant. 

2.6 Diagnostic Checking 

Model diagnostic testing is carried out to ensure that the selected model is appropriate for forecasting (Budianti 
et al., 2024). The diagnostic tests on the residuals include the white noise test and the normality test of the residuals. 

2.6.1 White Noise Test 

The White Noise test is conducted to ensure that the residuals are random and do not exhibit autocorrelation, 

using the Ljung–Box test. The hypotheses for the White Noise test are as follows. 

  : residuals are white noise/random 

  : residuals are not white noise/random 

Significance level:    0.05 

Ljung-Box test statistic: 

        ∑
  ̂  

 

   
 
                           (15) 

where:  

 ̂  : residuals autocorrelation coefficient at lag k; 

  : seasonal lag; 

  : number of observations. 

Rejection criteria    if            
  which means that the residuals are white noise/random (have no 

autocorrelation). 

2.6.2 Residual Normality Test 

The normality test of the residuals aims to ensure that the model residuals follow a normal distribution, which is 

conducted using the Kolmogorov–Smirnov test. The data used in this test are standardized residuals (Konstantinou, 

Mrkvicka, & Myllymaki, 2025). The hypotheses for the test are as follows. 

  : residuals are normally distributed 

  : residuals are not normally distributed 

Significance level:    0.05 
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Kolmogorov-Smirnov test statistic: 

                                          (16) 

where: 

    : supremum (maximu value);  

      : empirical cumulative distribution function; 

     : theoretical cumulative distribution function. 

Rejection criteria   if   <        which means that the residual data is normally distributed. However, if   > 

      , then it can be concluded that the residual data is not normally distributed. 

2.7 Akaike Information Criterion (AIC) 

Akaike Information Criterion (AIC) a measure used to evaluate the quality of a statistical model and to select the 

best model among several alternatives. AIC is employed to determine the most appropriate model that best represents 

the data while considering the number of parameters used (Febiola et al., 2024). The model with the smallest AIC 

value is considered the best model and will be selected for forecasting using the SARIMA method. The AIC formula 

is as follows. 

       (
∑  

 

 
)  (

  

 
)                 (17) 

where: 

   : squared residual; 

  : number of parameters; 

  : number of observations. 

2.8 Mean Absolute Percentage Error (MAPE) 

 MAPE is used to measure the accuracy of a forecasting model. A smaller MAPE value indicates a higher level of 

forecasting accuracy (Latief, Nur’Eni, & Setiawan, 2022). The formula for calculating MAPE is as follows. 

     
 

 
∑ (

     

  
)       

                         (18) 

where:  

   : actual value at the     observation; 

   : forecast value at the     observation; 

  : number of observations.  

 MAPE provides a criterion for evaluating the performance quality of a forecasting model (Febiola et al., 2024). 

The smaller the MAPE value, the better the model’s forecasting accuracy. The evaluation criteria are presented in the 

following table. 

Table 1. MAPE Evaluation Criteria 

MAPE Value Interpretation 

< 10% highly accurate forecasting 

10-20% good accurate forecasting 

20-50% reasonable accurate forecasting 

> 50% inaccurate accurate forecasting 

 

3. Materials and Methods  

3.1 Data and Sources 

This study focused on forecasting monthly palm oil production at Terantam Plantation, PTPN IV Regional III, 
Indonesia, for the year 2025. The data used in this research consisted of secondary data obtained directly from the 
historical production records of Terantam Plantation. Specifically, the dataset comprised monthly palm oil production 
volumes measured in kilograms (kg) from January 2014 to December 2024, resulting in a total of 132 observations. 
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The use of long-term monthly data was intended to capture both trend and seasonal patterns inherent in palm oil 
production. All data processing, model estimation, and forecasting analyses were conducted using RStudio software 
(version 4.4.2). The Seasonal Autoregressive Integrated Moving Average (SARIMA) model was employed as the 
primary forecasting method due to its capability to accommodate seasonal fluctuations commonly observed in 
agricultural time series data. 

3.2 Analytical Procedure 

The forecasting process using the SARIMA model was conducted through several sequential stages, as described 
below. 

1) Data Input 

The monthly palm oil production data from January 2014 to December 2024 were first imported into the RStudio 
environment. Data consistency and completeness were verified to ensure that no missing or anomalous values would 
affect subsequent analyses. 

2) Data Pattern Identification 

An initial time series plot was generated to visually examine the overall pattern of the data. This step aimed to 
identify the presence of trends, seasonal variations, and irregular fluctuations, which are critical for selecting an 
appropriate time series modeling approach. 

3) Stationarity Testing 

Stationarity is a fundamental assumption in SARIMA modeling. Stationarity in the mean was examined using the 
Augmented Dickey-Fuller (ADF) test, while stationarity in the variance was assessed using the Box–Cox 
transformation. If the series was found to be non-stationary in the mean, differencing was applied iteratively until 
stationarity was achieved. Seasonal differencing was applied where necessary to address annual seasonal effects. 

4) Initial Model Identification 

The initial structure of the SARIMA model was identified through an examination of the Autocorrelation 
Function (ACF) and Partial Autocorrelation Function (PACF) plots. These plots were used to determine plausible 
orders of the non-seasonal and seasonal autoregressive and moving average components. To support and validate this 
process, the auto.arima() function from the forecast package in R was also employed to generate candidate models 
based on information criteria. 

5) Model Selection 

The selection of the best-fitting model was based primarily on the Akaike Information Criterion (AIC). Among 
the competing models, the model with the smallest AIC value was selected, as it represents the optimal balance 
between model goodness-of-fit and model complexity. 

6) Parameter Estimation and Significance Testing 

After selecting the optimal SARIMA model, parameter estimation was performed to obtain the coefficients of the 
autoregressive, moving average, and seasonal components. The statistical significance of each estimated parameter 
was evaluated using z-tests at a 5% significance level. Parameters with p-values less than 0.05 were considered 
statistically significant. 

7) Diagnostic Checking 

Diagnostic checking was conducted to assess the adequacy of the selected model. The Ljung–Box test was 
applied to the model residuals to verify the absence of autocorrelation and to confirm that the residuals behaved as 
white noise. In addition, the normality of the residuals was evaluated using the Kolmogorov–Smirnov test. These 
diagnostic tests ensured that the underlying assumptions of the SARIMA model were satisfied. 
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8) Model Evaluation 

The forecasting performance of the selected SARIMA model was evaluated using the Mean Absolute Percentage 
Error (MAPE). MAPE was chosen as it provides an intuitive measure of forecasting accuracy by expressing the 
average prediction error as a percentage of the actual values. 

9) Forecasting 

Finally, the validated SARIMA model was used to generate forecasts of monthly palm oil production for the 

period January to December 2025. The forecast results were presented along with confidence intervals to account for 

uncertainty in the predictions. 

4 Results and Discussion 

4.1 Descriptive Analysis 

This descriptive analysis is used to describe the characteristics of palm oil production data based on volume (kg) 
at Terantam Estate by examining the mean and median values, as presented in the table below. 

Table 2. Descriptive Statistics of Palm Oil Production Volume (kg) 

Minimum Q1 Mean Median Q3 Maximun 

3,228,770 7,019,275 9,947,132 9,811,945 12,609,102 16,474,930 

Table 1 shows that mean palm oil production (kg) at Terantam Estate from January 2014 - December 2024 is 
9,947,132 kg, while the median is 9,811,945 kg. This indicates that there are several periods with higher production 
levels, resulting in the mean value being greater than the median. The minimum recorded palm oil production is 
3,228,770 kg, while the maximum reaches 16,474,930 kg, indicating a considerable production gap of 13,246,160 kg. 

In addition, the first quartile (Q1) is 7,019,275 kg, indicating that 25% of the palm oil production data falls below 
this value. Meanwhile, the third quartile (Q3) is 12,609,102 kg, showing that 75% of the production data is below this 
value, or only 25% of the palm oil production exceeds it. Therefore, it can be concluded that palm oil production at 
Kebun Terantam tends to be relatively stable, with the mean being fairly close to the median, although there are 
certain periods that show significant increases. The considerable range between the minimum and maximum 
production also reflects differences in harvest outcomes influenced by seasonal factors, weather conditions, and 
technical aspects of plantation management. Overall, this data indicates that production levels remain relatively high 
despite some fluctuations. 

4.2 Data Pattern Identification 

 

 

 

 

 

 

 

 

 

Figure 1. Plot of Palm Oil Production at Kebun Terantam 

Figure 1 illustrates the pattern of palm oil production in terms of volume (kg) from January 2014 - December 
2024 at Kebun Terantam. The data exhibit trends, seasonality, and random fluctuations. In general, palm oil 
production at Kebun Terantam has increased year by year. It can be observed that in 2019, the data pattern was 
around the average, while in other years, clear variations are evident. 



                Faradila et al./ Operations Research: International Conference Series, Vol. 6, No. 4, pp. 191-205, 2025                                 199 

 
Furthermore, Figure 4.1 also shows a recurring seasonal pattern each year, with sharp increases and decreases. 

This seasonal pattern can be seen through the blue line, which forms an annual repeating cycle, where production 
tends to decline during certain periods and then rise again in the following months. For instance, in 2024, palm oil 
production decreased at the beginning of the year, then increased significantly in mid-year, and declined again toward 
the end of the year. The consistent peaks and troughs reinforce the existence of an annual seasonal pattern in palm oil 
production. This pattern may be influenced by harvest cycles or environmental factors, such as rainfall and 
fertilization. Therefore, the SARIMA model is suitable for forecasting palm oil production at Kebun Terantam for 
2025. 

4.3 Stationarity Test 

4.3.1 Stationarity in Mean  

Stationarity in mean was tested using the Augmented Dickey-Fuller (ADF) test. This test was conducted to 

ensure that the data are stationary in mean. The results of the ADF test are presented in the following table. 

Table 3. Stationarity Test in Mean (ADF) 

Test Statistic Lag p-value Conclusion 

-4.2818
 

5 0.01 Reject    

The hypotheses for testing stationarity in mean using the Augmented Dickey-Fuller (ADF) test are as follows. 

  :     (Data is non-stationary in mean)  

  :     (Data is stationary in mean) 

Significance level:        

Test statistic:            

 

 By comparing the ADF test statistic with the critical value, it can be seen that                       
                , so    is rejected. This indicates that the data are stationary in mean. The ADF test used a lag of 

5, which represents the number of lagged residuals considered to address potential autocorrelation, making the ADF 

test results more accurate. 

4.3.2 Stationarity in Variance 

The stationarity in variance was tested using the Box-Cox transformation by examining the lambda ( ) value.  

Table 4. Stationarity Test in Variance (Box-Cox Transformation) 

Transformation Box-Cox 

  0.825 

Based on Table 3, the obtained λ value is 0.825. Since this value is close to 1, it can be concluded that the data 
are already stationary in variance and do not require significant transformation. 

4.4 Initial Model Identification 

In the initial model identification stage, ACF and PACF plots were used to determine the preliminary model 
regarding the relevant AR and MA orders for constructing the SARIMA model. The results of the model 
identification are shown in Figure 2. 

 

 

 

 

 

 

Figure 2. ACF and PACF Plots 
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Based on Figure 2, the ACF plot shows a gradual decline (tail-off), whereas the PACF plot exhibits a significant 

spike at lag 1 followed by a sharp cutoff. This pattern is characteristic of an Autoregressive (AR) model, specifically 
AR(0) and AR(1), as the PACF stops at lag 1. Meanwhile, the ACF plot shows a slow decline up to lag 4, indicating 
the presence of a non-seasonal MA component with orders MA(0), MA(1), MA(2), MA(3), and MA(4), as there is a 
cutoff after lag 4. 

Furthermore, the ACF plot shows significant peaks at multiples of lag 12, indicating the presence of a seasonal 
component with an annual period (s = 12). This seasonal pattern is more clearly observed in the ACF plot than in the 
PACF plot, suggesting a seasonal MA component of order 1, namely MA(1) at lag 12. The initial identification results 
indicate that the appropriate model is SARIMA(1,0,4)(0,1,1)

12
. Subsequently, this model will be compared with the 

best-fitting model obtained using the auto.arima() function in RStudio. 

4.5 Model Selection 

The selection of the best model was carried out by comparing the Akaike Information Criterion (AIC) values for 

all the models tested using RStudio. Based on experiments with several models generated by the auto.arima() 

function, the SARIMA(0,1,4)(0,1,1)
12

 model was identified as the best model because it has the lowest AIC value 

compared to the other models. This model will be compared with the model obtained from the initial identification, 

namely SARIMA(1,0,4)(0,1,1)
12

.  

Table 5. Model Comparison 

Model AIC 

SARIMA(1,0,4)(0,1,1)
12

 3694.375 

SARIMA(0,1,4)(0,1,1)
12

 3663.502 

Based on Table 4, it can be seen that the model with the lowest AIC is SARIMA(0,1,4)(0,1,1)
12

. This model is 

expected to provide more accurate forecasting results. Therefore, forecasting using the SARIMA model can be carried 

out with this best-fitting model. 

4.6 Parameter Estimation 

Table 6. Parameter Estimation 

 Estimate Standard Error z-value Pr(> |z|) Conclusion 

MA(1) -0.363 0.089 -4.093 0.000 Reject    

MA(2) 0.039 0.097 0.404 0.686 Fail to Reject    

MA(3) -0.094 0.080 -1.174 0.240 Fail to Reject    

MA(4) -0.253 0.084 -2.995 0.003 Reject    

SMA(1) -0.718 0.134 -5.264 0.000 Reject    

Parameter estimation was conducted to examine the influence of each MA and SMA component in the 

model. Based on Table 4.4, the estimate for the MA(1) parameter has a coefficient of -0.363, indicating a 

negative effect of the previous period’s error on the current data. The MA(2) parameter has a coefficient of 

0.039, suggesting a positive effect from the error two periods ago, although the magnitude is relatively 

small. The MA(3) parameter has a coefficient of -0.094, showing a negative influence from the error three 

periods prior.  

Furthermore, the MA(4) parameter has a coefficient of -0.253, also indicating a negative effect from the 

error four periods ago. Meanwhile, the seasonal parameter SMA(1) has a coefficient of -0.718, meaning that 

the seasonal error from one period ago exerts a relatively large negative impact on the current data. 

Thus, the model is formed by a combination of short-term error effects across several lags and seasonal 

error effects. Based on the parameter estimation results, the equation for the SARIMA(0,1,4)(0,1,1)
12

 model is 

obtained as follows. 
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                     . 

Thus, the SARIMA(0,1,4)(0,1,1)
12

 model is obtained as follows: 

                                                                           
                                            . 

This model indicates that the current period’s palm oil production (  ) is influenced by previous period values 

and past error components. The value of      has a positive effect on the current period, whereas       has a negative 

effect, and       has a positive effect again, reflecting an annual seasonal pattern. Regarding the error components,, 

   directly affects   , while the error from one month ago (-0.363    ) has a negative effect. The error from two 

months ago (0.039    ) has a small positive effect, whereas errors from three months (-0.094    ) and four months 

ago (-0.253    ) have negative effects.  

The seasonal component is strongly reflected by the error from one year ago (-0.718     ) which exerts a large 

negative effect. Meanwhile, the errors from one year plus one month (0.261     ) the error from one year plus two 

months (-0.028     ) has a small negative effect, the error from one year plus three months (0.067     ) has a small 

positive effect, and the error from one year plus four months (0.182     ) has a moderately significant positive effect. 

Overall, this model captures a combination of short-term influences and annual seasonal patterns, with the largest 

impact coming from the seasonal error one year ago, which is -0.718. 

4.7 Significance Testing of Parameters 

The significance test was conducted to determine whether the estimated parameters have an effect on the data. 

Based on Table 5, the hypothesis testing for the estimated parameters is as follows. 

a. MA(1) 

  :     (the parameter is not significant) 

  :     (the parameter is significant) 

Significance level:    0.05 

Test statistic for the parameters MA(1) = - 4.093 

Because             |- 4.093| >  
     (

     

 
      )

(1.979), then rejected   . It can be concluded that, at a 5% 

significance level, there is sufficient evidence to state that the MA(1) parameter is significant.  

b. MA(2) 

  :     (the parameter is not significant) 

  :     (the parameter is significant) 

Significance level:    0,05 

Test statistic for the parameters MA(1) = 0.404 

Because             |0.404| <  
     (

     

 
      )

(1.979), then fail to reject   . It can be concluded that, at a 5% 

significance level, there is insufficient evidence to indicate that the MA(2) parameter is significant.  

c. MA(3) 

  :     (the parameter is not significant) 

  :     (the parameter is significant) 

Significance level:    0.05 

Test statistic for the parameters MA(1) = - 1.174 

Because             |- 1,174| <  
     (

     

 
      )

(1.979), then fail to reject   . It can be concluded that, at a 5% 

significance level, there is insufficient evidence to indicate that the MA(3) parameter is significant.  

d. MA(4) 

  :     (the parameter is not significant) 

  :     (the parameter is significant) 

Significance level:    0,05 

Test statistic for the parameters MA(1) = - 2.995 

Because             |- 2.995| >  
     (

     

 
      )

(1.979), then rejected   . It can be concluded that, at a 5% 

significance level, there is sufficient evidence to state that the MA(4) parameter is significant.  
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e. SMA(1) 

  :     (the parameter is not significant) 

  :     (the parameter is significant) 

Taraf signifikansi:    0.05 

Test statistic for the parameters MA(1) = - 5.264 

Because             |- 5.264| >  
     (

     

 
      )

(1.979), then rejected   . It can be concluded that, at a 5% 

significance level, there is sufficient evidence to state that the SMA(1) parameter is significant.  

In general, the MA(1), MA(4), and SMA(1) parameters are significant. These parameters have a significant 
effect on palm oil production data in terms of volume (kg), indicating that the model used is appropriate for capturing 
the data pattern. Meanwhile, the MA(2) and MA(3) parameters are not significant, suggesting that the errors better 
represent the patterns in short-term periods. The best model obtained previously is SARIMA(0,1,4)(0,1,1)

12 
which 

includes MA(4). The inclusion of MA(4) in the model is based on the AIC comparison, where the model with MA(4) 
yields the lowest AIC value among the tested models. Therefore, SARIMA(0,1,4)(0,1,1)

12
 is selected as the best 

model, as it effectively captures the patterns in palm oil production data in terms of volume (kg). 

4.8 Diagnostic Checking 

4.8.1 White Noise Test 

White Noise test was conducted using the Ljung-Box test to ensure that the model used is appropriate. A model 

is considered adequate if the residuals behave as white noise, meaning that there is no correlation in the residuals. The 

results of the Ljung-Box test are presented in the following table. 

Table 7. Ljung-Box Test 

Model Test Statistic Lag p-value Conclusion 

SARIMA(0,1,4)(0,1,1)
12 

16.834 12 0.156 Fail to Reject    

The hypothesis testing based on the Ljung-Box test is as follows. 

  : residuals are  white noise/random 

  : residuals are not white noise/random 

Significance level:    0.05 

Ljung-Box test statistic = 16.834 

Because  (16.834) <             
 (21.026), then fail to reject   . It can be concluded that, at a 5% significance level, 

the model exhibits white noise behavior. This means that there is no autocorrelation in the residuals, indicating that 

the model is suitable for use. 

4.8.2 Residual Normality Test 

This test was conducted using the Kolmogorov-Smirnov test, as presented in the following table.   

Table 8. Kolmogorov-Smirnov Test 

D p-value Conclusion 

0.084 0.310 Fail to Reject 

   

The hypotheses for the test are as follows. 

  : residuals are normally distributed 

  : residuals are not normally distributed 

Significance level:    0.05 

Kolmogorov-Smirnov test statistic (D) = 0.084 

Because   (0.084) <        (0.118), then fail to reject   . It can be concluded that, at the 5% significance level, there 

is sufficient evidence to state that the residuals are normally distributed. 
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4.9 Mean Absolute Percentage Error (MAPE)  

Table 9. Mean Absolute Percentage Error (MAPE) Value  

Model MAPE Value 

SARIMA(1,0,4)(0,1,1)
12

 8.07% 

SARIMA(0,1,4)(0,1,1)
12 

8.02% 

Based on the model evaluation results in Table 9 the MAPE values for both models are not significantly 
different. However, SARIMA(0,1,4)(0,1,1)

12
 model has a smaller MAPE value of 8.02%. According to Table 1, a 

MAPE value below 10% indicates a very high forecasting accuracy. Therefore, the SARIMA(0,1,4)(0,1,1)
12

 model 
can be considered to have a very high accuracy in forecasting palm oil production data, making it suitable to be used 
as a forecasting mode. 

4.10 Forecasting Using SARIMA  

Forecasting of palm oil production based on volume (kg) from January - December 2025 at Kebun Terantam was 
carried out using the best model, namely SARIMA(0,1,4)(0,1,1)

12
. The resulting plot is shown in Figure 3. 

 

 

 

 

 

 

 

 

 

 

Figure 3. Forecast Plot of Palm Oil Production in 2025 at Kebun Terantam 

The pattern in Figure 3 shows a seasonal variation in palm oil production that corresponds to the pattern 

observed in previous harvests. The forecast plot also indicates that the palm oil production trend tends to increase 

until mid-year and begins to decline toward the end of 2025. The shaded area in the plot represents the confidence 

interval, within which the forecast results fall under a certain range of uncertainty. The forecasted palm oil production 

for 2025 can be seen in Table 9. 

Table 9. Forecasted Palm Oil Production (kg) for 2025 

Month Forecasted Value Actual Data Difference 

January 9,784,150.00 10,086,180.00 302,030.00 

February 9,347,573.00 9,876,110.00 528,537.00 

March 10,610,974.00 10,398,310.00 212,664.00 

April 10,652,096.00 10,964,470.00 312,374.00 

May 11,710,068.00 11,850,630.00 140,562.00 

June 11,724,689.00 11,312,710.00 411,979.00 

July 13,177,678.00 - - 

August 14,855,589.00 - - 

September 15,108,145.00 - - 

October 14,092,335.00 - - 

November 13,114,129.00 - - 

December 12,744,594.00 - - 
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Based on Table 9, the highest forecasted palm oil production occurs in September, amounting to 15,108,145.00 

kg. Meanwhile, the lowest forecasted production is in February, at 9,347,573.00 kg. From January - June 2025, actual 

production data are available for comparison with the forecasted values. The differences between the forecasted and 

actual production are relatively small, such as in May 2025, where the forecasted production is 11,710,068.00 kg and 

the actual production is 11,850,630.00 kg, resulting in a difference of only 140,562.00 kg. This supports the previous 

evaluation, which indicated that the model has very high accuracy with a MAPE of 8.02%. This shows that the 

SARIMA(0,1,4)(0,1,1)
12

 model can capture the pattern of palm oil production quite well. However, in January 2025, 

there is a larger discrepancy, with the forecasted value at 9,784,150.00 kg and the actual production at 10,086,180.00 

kg, resulting in a difference of 302,030.00 kg. This indicates that although the model generally provides accurate 

forecasts, there is some variation in the level of accuracy between different months. A visualization comparing the 

forecasted and actual palm oil production can be seen in Figure 4. 

 

 

 

 

 

 

 

 

 

Figure 4. Forecast Plot of Palm Oil Production in 2025 at Kebun Terantam 

Figure 4 shows that the comparison between the forecasted and actual palm oil production for the period 
January–June 2025 follows a very similar pattern. Both lines indicate a decrease in production in February, followed 
by an increase reaching the highest value in May, and a slight decline in June. In January and February, the actual 
production was recorded higher than the forecasted values. Meanwhile, from March to May 2025, the forecasted and 
actual production closely follow each other, with differences becoming progressively smaller, indicating a high level 
of model accuracy. In June, the actual production appears lower than the forecasted value, but the difference is 
relatively small. This demonstrates that the SARIMA(0,1,4)(0,1,1)12 model can adequately capture the fluctuations in 
palm oil production. Although actual data for July–December 2025 are not yet available, the forecast still provides a 
useful basis for production planning and decision-making regarding the optimal management strategies for Kebun 
Terantam. 

5 Conclusion 

This study demonstrated that the SARIMA(0,1,4)(0,1,1)
12

 model is the most appropriate model for forecasting 
monthly palm oil production at Kebun Terantam, PTPN IV Regional III. The selected model effectively captured both 
the trend and seasonal characteristics of the production data and was subsequently used to generate forecasts for the 
year 2025. The forecasting results revealed a consistent seasonal production pattern, with output gradually increasing 
from the beginning of the year, reaching a peak in September at 15,108,145.00 kg, and declining toward the end of the 
year. A comparison between the forecasted values and the actual production data for January–June 2025 showed 
relatively small deviations, indicating good model reliability. For instance, the smallest difference occurred in May, 
amounting to only 140,562.00 kg, while the largest difference was observed in January at 302,030.00 kg. The 
forecasting accuracy evaluation yielded a Mean Absolute Percentage Error (MAPE) of 8.02%, which falls within the 
category of very high accuracy. This result confirms that the SARIMA model is capable of accurately representing the 
seasonal dynamics of palm oil production at the plantation level. From a practical perspective, the forecasting 
outcomes provide valuable information for plantation management, particularly in planning harvesting activities, 
allocating labor, and managing processing capacity. Despite its strong performance, this study is limited by the 
exclusion of exogenous variables such as rainfall, fertilizer application, and pest disturbances. Future research is 
therefore recommended to incorporate such factors using SARIMAX or hybrid forecasting approaches to further 
enhance predictive performance. 

Overall, this study provides empirical evidence supporting the effectiveness of SARIMA modeling for seasonal 
palm oil production forecasting and offers a practical reference for its implementation in plantation-level decision-
making. 
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