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Abstract

The special form x% — dy? = + 1 is called the Fermat-Pell’s equation where d is a positive integer that is not a square. Let's say
the x, y solution of this equation is a positive solution as long as x and y are both positive. Since solutions beyond y = 0 can be
arranged in sets of four by sign combinations + x, + y, it is clear that all solutions will be known once all positive solutions are
found. The result which gives us a starting point confirms that any pair of positive integers satisfying the Fermat-Pell’s equation

can be obtained from infinite continuous fraction denoting the irrational number vd.
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1. Introduction

Number theory is that branch of mathematics that is concerned with the properties of numbers. For this reason,

number theory, which has a 4000 years of rich history, has traditionally been considered as pure mathematics. The
theory of numbers has always occupied a unique position in the world of mathematics. This is due to unquestionable
historical importance of the subject. It is one of the few disciplines having demonstrable results that predate the very
idea of a university or an academy. The natural numbers have been known to us for so long that mathematician
Leopold Kronecker once remarked, “God created the natural numbers, and all the rest is the work of man”. Far from
being a gift from Heaven, number theory has a long and sometimes painful evolution. (David M. Burton. 2011).
The theory of continued fractions begins with Rafael Bombelli, the last of great algebraists of Renaissance Italy. In
his L’ Algebra Opera (1572), Bombelli attempted to find square roots by using infinite continued fractions. One of the
main uses of continued fraction is to find the approximate values of irrational numbers. (Gareth A. Jones and J. Mary
Jones. 2007).

Srinivas Ramanujan has no rival in the history of mathematics. His contribution to number theory is quite
significant. G.H.Hardy, commenting on Ramanujan’s work, said “On this side (of Mathematics) most recently I have
never met his equal, and | can only compare him with Euler or Jacobi”.

Pell’s equation x2 — dy? = 1, was probably first studied in the case x? — 2y? = 1. Early mathematicians, upon

discovering that /2 is irrational, realized that although one cannot solve the equation x? — 2y? = 0 in integers,one
can at least solve the “next best things”. The early investigators of Pell equation were the Indian mathematicians
Brahmagupta and Bhaskara. In particulars Bhaskara studied Pell’s equation for the values d = 8,11,32,61, and 67
Bhaskara found the solution x = 1776319049, y = 2261590 for d = 61. (David M. Burton. 2011), (Neville
Robbins. 2006).

Fermat was also interested in the Pell’s equation and worked out some of the basic theories regarding Pell’s
equation. It was Lagrange who discovered the complete theory of the equation x? — dy? = 1. Euler mistakenly
named the equation to John Pell. He did so apparently because Pell was instrumental in writing a book containing
these equations. Brahmagupta has left us with this intriguing challenge: “A person who can, within a year, solve
x%2 —92y? = 11is a mathematician.” In general Pell’s equation is a Diophantine equation of the form x? — dy? = 1,
where d is a positive non square integer and has a long fascinating history and its applications are wide and Pell’s
equation always has the trivial solution (x, y) = (1, 0), and has infinite solutions and many problems can be solved
using Pell’s equation. (David M. Burton. 2011), (Martin Erickson and Anthony Vazzana. 2010).
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2. Methods
2.1 Linear Diophantine Equation

A linear equation which is to be solved for integers is called a Diophantine equation. The linear Diophantine
equation of the form ax + by = c has solution iff (a, b)|c.
Let a, b, c € Z. Consider the linear Diophantine equation ax + by = c.
a) If (a, b) 1 c, there are no solutions.
b) If (a, b)|c, there are infinitely many solutions of the form
x=gk+x0,y=—%k+y0, (1)
Where (xq,y,) is a particular solution and k € Z. (Neville Robbins. 2006).

Example: 6x + 9y = 21
Since (6,9) = 3 and 3|21, there are infinitely many solutions. By trial and error we find that, x = =7,y = 7is a
particular solution. Hence the general solution is given by
x=3k—-7,y=-2k+7
1.2 Infinite Continuous Fractions

If [ag; aq,a,,...] is an infinite continuous fraction, The value of this infinite continuous fraction is limy_,, ¢,
where cy, is the k —th convergent value. To determine cy, take [aq; aq,a,, ...] is an infinite continuous fraction. With
Po =Qp,qo =1
pr=aa+1,q9 =0
Pk = QgPr-1 + Pk-2,qk = Ak Q-1 + qr-2,k = 2,

Cp = Z_,; (2)

Let [ag; aq,a,,...] is an infinite continuous fraction with a;, > 0 for k > 1. Then [ay; aq,a,,...] is irrational.
(David M. Burton. 2011).

Write x = [ag; a4, a,,...]. We will show that x is irrational. Suppose inversely that x = g, where p and q are
integers. We will show that this leads to a contradiction.

Since the odd convergence is greater than x and the even convergence is less than x,

Cok+1 = X > Co.

Then
Cok+1 — C2k > X — Cgpe > 0,
(-1

————>x—cy >0,
fhkqukﬂ
——————>x—Cy >0,
q2k92k+1 2
—_— > Xx— pik >0,
QZIiQZk+1 d2k

> Xqax — P2k > 0,
QZ§+1

> Xqax — P2k > 0,
q2k+1

P2k

> - P > OI

q2k+1 q 2k

> pqzk — P29 > 0.
d2k+1

Notice that this inequality is true for all k, and pq,, — porq is an integer. But q is fixed(particular), and

Qorx+1 = 2k + 1, so if we make k big enough eventually g, will be bigger than g. Then . ©_ will be a fraction less
2k+1

than 1, and we have an integer pq,, — p2xq is between 0 and a fraction less than 1. Since this is impossible, x cannot
be rational.
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We now know that every infinite continuous fraction made of positive integers represents an irrational number.
The converse is also true, and gives an algorithm for calculating the expansion of a continuous fraction.

L fork = 0.

Let x € R be irrational. Suppose x, = x, and a;, = [xy], Xx41 = —
k—%k

Then for every k = 0,

x = [ag;ay,a9,...x] = ag +

a1 +

1
iy P— | —+ H

So, x;, represents the "infinite tail" of continuous fractions.
For k = 0, the claim is that x = x,, which is true by definition.

Assume that the result holds for n. Then

x =
kt1 = T
1
Xp — Qg =
Xk+1
1
X = ai +
Xk+1
Then
1
x = |ap; a,az, ..., ax + = [ag; ay,az, ..., A, Xje41]-
Xk+1

This the result for k + 1, so the result is true for k = 0 by induction.

Let x € R be irrational. Suppose x, = x, and a; = [xx], Xk41 = xkflak for k = 0. Then for every k =0,
x = [ag; aq,ay, ...]. (Rosen, Kenneth. H. 1984).

Step 1. xj, isirrational for k = 0.
Since x is irrational and x, = x, the result is true for k = 0.
Assume that k > 0 and that the result is true for k — 1. It will be shown that xj is irrational.
Suppose on the contrary that x;, = % where s, t € Z. Then
s 1 t
E=m SO Xp—1 = ak_1+;.
Now all the a;'s are clearly integers (since a, = [x)] means they’re outputs of the greatest integer function), so

t. . . s . . .
Ap—1 +3 18 the sum of an integer and a rational number. Therefore, it’s rational, so xj_4 iS rational, contrary to the

induction hypothesis.
It follows that x;, is irrational. By induction, xk is irrational for all k > 0.
Step 2. The a;'s are positive integers for k > 1.
Let k > 0. Since a; = [x;], the definition of the greatest integer function gives
ay < Xk < ay + 1.
But xy, is irrational, so a; # x;. Hence,
ar < xp <ap+1,
0< X — Qg < 1,
1

X = >1
k+1 Xy — a ,

A1 = [Xp41] 2 1.
Since k > 0, this proves that the a;,'s are positive integers for k > 1.

Step 3.
limy_,o ¢ = limy_lay; aq,a,,...] = x.
First, We’ll get a formula for x in terms of the p’s, ¢’s, and a’s.

Then We’ll find |x - %| and show that it’s less than something which goes to 0
k
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Recall the recursion formulas for convergent:
Pk = QgPr-1 + Pr—2 dan qx = axqr—1 + qr—2-
The right sides only involve terms up to a; (and p’s and ¢’s of smaller indices). Therefore, the following fractions
have the same p’s and q’s through index k:
lag; ay,ay, ..., ag, xi41] and [ag; aq, ag, ..., A, Xjey1, -- 1.
Using the preceding proposition and the recursion formula for convergent, We get

X = xg = [ag: @ Ay ons Qs X ]_xk+1pk+Pk—1
=xg = [Ag; A1; Ap; s A Xpy1] = —————.
Xg+19k T Gr-1

Therefore,
_ Pk _ Xk41Pk * Pk—1 _ P _ Xe+1Pilk T Pk—19k = Xic+1Pkk ~ Prdk-1
Ak Xk+19k + k-1 Qi (xk+1CII(k + Qr-1)qxk
Pk-19k — Prlr-1 (-1)

o1 + G- k19 + Ge-1) T
Take absolute values:

S e
x——| = :
Q! (Xk+19r + Gr-1)9k
Now
Xer1 > [Xpr1] = Qpa1s SO X1 qic + Qo1 > Qg1 G + Q-1 = Qierr-
Therefore,
1 1
< )
Xe+19k T Gk-1 Gr+1
1 1
< )
(Xk+19k + Qr-1)9k  Qr+19k
=l <
) k! k+19k
By an earlier lemma, q, = k and qx4+1 =k + 1, 0
Pk 1 1
|x - —| < < .
) Akl Grerqe~ k(k+1)
Now limy,_, o, D = 0, so by the Squeezing Theorem
lim |x _ P = 0.
- - - k—)m qk
This implies that
. Dk
lim — = x.
k—o0 qk

Example. Calculating continuous fraction expansion v23 ~ 4,8. Consecutive irrational numbers x; (and therefore
integers a;, = [x;]) can be calculated more easily, with the calculation shown below:

IU:V23:4+(V2 _4) aU:4
. 1 1 V23 + 4 1+J2‘_3 |
= = = — —— a |- —

' T X —[x] V234 7 7 '
1 7 V23 +3 V23 -3
X = = L b TR LAl —
X1 — [x1] V23 -3 2 2
. 1 2 V23 +3 +J2‘—4 1
—_— ——1 ——1 = ] a —_
T ] V233 7 7 ’
1 7
X4 = =+/234+4=8+(v23-4) ag = 8

x3 — [x3] 723 —4
Since x5 = x4, also xg = X, X7 = X3, Xg = X4, then we get xg = x5 = x4, and so on, which means that blocks of

integers 1, 3, 1, 8 repeat indefinitely. We find that the continuous fractional expansion of V23 is periodic with the
form

V23 =1[4;1,3,1,81,3,18,...]
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=[4;1,3,1,8]

Example. calculate the continuous fractional expansion and convergence of .

xo=7m =3+ (r —3) ag =3
1 —l[xn] - 0.1415;2654“ = 7.06251330- - Gy =7
x = _1[11] = 0_06251330‘“ = 1599659440 -- g, =15
B =5 —l[xz] - 0.9965;440'-- = 100341723 --- a3 =1
M= : — 292.63467 - - - as =292

x3 — [x3] 0.00341723 ...

Then calculating py, g, ¢k, the results are as shown in the table below

Table 1: Expansion of the first five continuous fraction terms of ©

Xk ag Pk Ak Ck
T 3 3 1 3
1
7.06251... 7 22 7 22
7
15.99659... 15 333 106 333
106
1.00341... 1 355 113 355
113
292.63459... 292 103993 33102 103993
33102

So, the infinite continuous fraction for 7 is
w =[3;7,15,1,292, ...]

136

however, unlike the case of v23 where all the partial denominators of a,, are explicitly known, no pattern gives the

complete ordering of a,,. The first five converge

3 22 333 355 103993
177106’ 113" 33102

As an examination of Consequences and Theorems, note that we must have

| 22 < 1
-l <=
7 72
now 2 < 1 < 2, and therefore
100 7

T——|<—

| 22| 22 314 1 <1
7 7 100 7.50 72

as expected.
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3. Results and Discussion

Consider the form of the Diophantine equation
x2-dy2 = n. (3)
If d is a perfect square, then the equation can be solved directly.

Example. Solve the Diophantine equation x> — 9y? = 13,

We can write the equation as (x — 3y) (x + 3y) = 13.

This is the equation in integers, and is the factorization of 13. There are only two ways to factor 13 in positive
integers: 1-13 and 13-1. (we can check that negative factorization gives the same result.)

Letx — 3y = landx + 3y = 13. It can be solved with

i ; 33; _ 113 ot [1 _33”;]:[113]

Bl=51% A=

(x,y) = (7, 2) is an integer solution, so it qualifies as a solution to the initial equation. Since x and y appear as x> and y*
in the original equation, (=7, 2), (7,—2), and (—7,—2) are also solutions.

Similarly, x — 3y = 13andx + 3y = 1gives (x,y) = (=7,2) (which we already know).

So the solutions to the Diophantine equation x2 — 9y2 = 13 are (7, 2), (-7, 2), (7,-2), and (-7,—2).

Now suppose we change the problemto x2 — 9y2 = 10. Writeitas (x — 3y) (x + 3y) = 10.

The possible factorizations of 10are 1 - 10,10-1,2-5,and 5 - 2.

Tryx — 3y = 1,x + 3y = 10.

Then

Then

11

B o G2 -3

This is not an integer solution, so this factorization does not give an integer solution.
We can verify that the other factorizations do not give an integer solution. So, x2 — 9y2 = 10 has no integer
solutions.

Now consider the case where d is not a perfect square. The following facts relate the solutionto x2-dy2 = n
with the continuous fraction expansion of Vd.

Let d > 0,d is not a perfect square, and |k| < v/d. Every positive solution of x? - d y?> = k with (x,y) 1
satisfies x = p,,,y = q,, for some n > 0, where % is the n-th convergence of the continuous fraction expansion of

An
Vd.

This statement does not say which convergence will give a solution. The special form x? - d y2 = +1 is called
the Fermat-Pell equation. In this case, it is possible to say which convergence will solve the equation. Here will state
the following facts, and give some examples.

First, recall from the theory of periodic continuous fractions that irrational squares in particular, a number of the
form v/d, where d is not squared have an extension of the periodic continuous fraction.

If d > 0 and d is not a perfect square, then the expansion of the continuous fraction of v/d is periodic, and has
the form

[ag; ay, ..., Ap_1, 2a0].

If d > 0, dis not a perfect square, and |k| < v/d. Every positive solution of x? - dy? = k with (x,y) = 1

satisfies x = p,,y = q,, for some n > 0, where Z—" is the n —th convergence of the continuous fraction expansion of
Vd.

Let t be the period of the expansion of Vd.
(@) If tiseven,thenx? - d y> = —1 has no solutions. x? - d y2 = 1 has solutions x = ppr—1,V = qne—1

forn = 1.
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(b) If tis odd, then x2 - d y2 = —1 has solutions x = p,;—1,¥ = qne—q forn = 1,3,5,...,and x2 - d y?> = 1 has
solutions x = Prr—1,¥Y = qne—1 fOrn = 2,4,6,....

Example. (a) Find the first 6 terms (a, through as) and the numerators and denominators of the first 6 convergents
((po, 90) through (ps, gs)) of the continued fraction expansion of v/14.
(b) Use the continued fraction for v/14 to find solutions to the Fermat-Pell equations

x> — 14y?=—1 and x* — 14y* = 1.
(a) After calculating xy, ax, by, and gy according to equation (2), the results are as shown in the table below

Table 2: Expansion of the first 6 terms continuous fraction of V14

Xk ag Pk dxk
3.74165... 3 3 1
1.34833... 1 4 1
2.87082... 1 11 3
1.14833... 1 15 4
6.74165... 6 101 27
1.34833... 1 116 31

So, the infinite continuous fraction for V14 is

The first six converge is

(b) The expansion has period 4, which is even. Hence, x* — 14y* = —1 has no solutions.
The first solution to x? — 14y? = 1is (ps—1, qa—1) = (P3, q3) = (15, 4). We can check that

15214 - 4°=1,

Example. (a) Find the first 6 terms (a, through as) and the numerators and denominators of the first 6 convergents
((po» qo) through (ps, gs)) of the continued fraction expansion of v41.
(b) Use the continued fraction for v41 to find solutions to the Fermat-Pell equations

x? — 41y? = —1andx? — 41y? = 1.
(a) After calculating xy, ax, b, and g according to equation (1), the results are as shown in the table below

Table 3: Expansion of the first 6 terms continuous fraction of v41

Xk ag Pk qr
6.40312... 6 6 1
2.48062... 2 13 2
2.08062... 2 32 5
12.40312... 12 397 62
2.48062... 2 826 129
2.08062... 2 2049 320

So, the infinite continuous fraction for v41 is

The first six converge is
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13 32 397 826 2049

2562 °129’ 320

=1 o

(b) The period is 3, which is odd. The first solution to x? - 41y? = —1is given by (p3_1, q3-1) = (P2, ¢2) = (32,
5). We can check that
32" —41-5"=-1

For x? - 41y? = 1, We have 2 » 3 -1 =5, so the first solution is given by (ps, gs) = (2049, 320). We can check
that
2049° — 41 - 320° = 1.
In fact, we can generate the solution to the second equation using the solution to the first. Take (32, 5), and
compute

(32 — 5V41)? = 2049 + 320+/41.
The coefficients (2049, 320) give the solution to the second equation.
4. Conclussion

Fermat-Pell equation where d is a positive integer that is not a square. The solution to this equation is a positive
solution as long as x and y are both positive. it is clear that all solutions will be known once all positive solutions are
found. The results confirm that any pair of positive integers that satisfy the Fermat-Pell equation can be obtained from

a continuous fraction denoting the irrational number vVd.
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